dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter
نویسندگان
چکیده
dc measurements are made in a superconducting, persistent current qubit structure with a time-ordered meter. The persistent-current qubit has a double-well potential, with the two minima corresponding to magnetization states of opposite sign. Macroscopic resonant tunneling between the two wells is observed at values of energy bias that correspond to the positions of the calculated quantum levels. The magnetometer, a superconducting quantum interference device, detects the state of the qubit in a time-ordered fashion, measuring one state before the other. This results in a different meter output depending on the initial state, providing different signatures of the energy levels for each tunneling direction.
منابع مشابه
Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure
Measurements of thermal activation are made in a superconducting, niobium persistent-current qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a dc superconducting quantum interference device. This ramping causes time-ordered measurements of the two states, where measurement of on...
متن کاملQuantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a sup...
متن کاملQubit utilizing charge-number state in superconducting nanostructure
In single-Cooper-pair box, the number of electrons in the box is quantized and they form a single macroscopic quantum charge-number state, corresponding to the number of excess electrons in the box. By making all the electrodes superconducting, we can couple two neighboring charge-number states coherently. In this way one can create an artificial two-level system. Qubit operations were demonstr...
متن کاملEnergy relaxation time between macroscopic quantum levels in a superconducting persistent-current qubit.
We measured the intrawell energy relaxation time tau(d) approximately 24 micros between macroscopic quantum levels in the double well potential of a Nb persistent-current qubit. Interwell population transitions were generated by irradiating the qubit with microwaves. Zero population in the initial well was then observed due to a multilevel decay process in which the initial population relaxed t...
متن کاملOne-shot quantum measurement using a hysteretic dc SQUID.
We propose a single shot quantum measurement to determine the state of a Josephson charge quantum bit (qubit). The qubit is a Cooper pair box and the measuring device is a two junction superconducting quantum interference device (dc SQUID). This coupled system exhibits a close analogy with a Rydberg atom in a high Q cavity, except that in the present device we benefit from the additional featur...
متن کامل